Guardrails.ai
Use Guardrails.ai to add checks to LLM output.
Pre-requisites
- Setup Guardrails AI Server. quick start
Usage
- Setup config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY
guardrails:
- guardrail_name: "guardrails_ai-guard"
litellm_params:
guardrail: guardrails_ai
guard_name: "gibberish_guard" # 👈 Guardrail AI guard name
mode: "post_call"
api_base: os.environ/GUARDRAILS_AI_API_BASE # 👈 Guardrails AI API Base. Defaults to "http://0.0.0.0:8000"
- Start LiteLLM Gateway
litellm --config config.yaml --detailed_debug
- Test request
Langchain, OpenAI SDK Usage Examples
curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-npnwjPQciVRok5yNZgKmFQ" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi my email is ishaan@berri.ai"}
],
"guardrails": ["guardrails_ai-guard"]
}'
✨ Control Guardrails per Project (API Key)
info
✨ This is an Enterprise only feature Contact us to get a free trial
Use this to control what guardrails run per project. In this tutorial we only want the following guardrails to run for 1 project (API Key)
guardrails
: ["aporia-pre-guard", "aporia-post-guard"]
Step 1 Create Key with guardrail settings
- /key/generate
- /key/update
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-D '{
"guardrails": ["guardrails_ai-guard"]
}
}'
curl --location 'http://0.0.0.0:4000/key/update' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"key": "sk-jNm1Zar7XfNdZXp49Z1kSQ",
"guardrails": ["guardrails_ai-guard"]
}
}'
Step 2 Test it with new key
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-jNm1Zar7XfNdZXp49Z1kSQ' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "my email is ishaan@berri.ai"
}
]
}'